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Introduction

Introduction

Operations research

Customer behavioral models
e s~ :
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Demand and supply

Customer behavioral models Operations Research
@ Given the configuration of the @ Given the demand = configure
system = predict the demand the system
@ Maximize satisfaction @ Minimize costs
@ Here: discrete choice models @ Here: MILP

v

Discrete choice models in optimization problems
@ Integrated choice model = source of nonconvexity

@ Many techniques to convexify and linearize. Here: different approach

o Nonconvex representation of choice probabilities
o Include a wide class of discrete choice models
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Customer behavioral models

© Customer behavioral models
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Customer behavioral models

Utilities

Demand and supply
@ Population of N individuals
@ Set of products C in the market
o artificial "opt-out” product

@ C, C C subset of available products
to individual n

Utility

Ui, associated score to alternative i by individual n: Uj, = Vi, + €in
@ Vj,: deterministic part
@ ¢, error term

Behavioral assumption: n chooses i if U;, is the highest in C,
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Customer behavioral models

Probabilistic model

Choice Availability

W — 1 if n chooses i o J1 ifiec,
710 otherwise Yin =10 otherwise

Vn,VieC Vn,VieC

v

Win =1 yip=1and Uj, > anavj € Cn

Probabilistic model
e Pr(wi, =1) = Pr(Uj, > Ujp,Vj € Cp)
o D; =N Pr(w,=1)
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Simulation

Non linearity

@ D;j is in general non linear

e Example: Pr(w;, =1) = E}’Lyv";vm (logit model)
jec Yin

Simulation

Assume a distribution for ¢;,
Generate R draws &ip1 ... EinR

°
@ r behavioral scenario
°

The choice problem becomes deterministic

4
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Customer behavioral models

Demand model

Uinr = Vin + &inr = Z kaink + f(Z,',-,) + finr (1)
k

= Uj,, is not a random variable

Endogenous part of Vj,
@ Linear in the variables x;,x
@ Decision variables (involved in the optimization problem)

@ Assumption for the integration in a MILP

Exogenous part of V,
@ Depends on other variables z;,

@ f not necessarily linear
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Linear formulation

© Linear formulation
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Availability of alternatives (I)

Variables
@ y;, decision of the operator

Yin =20 Vi¢Cpn (2)

@ yinr availability at scenario level (e.g. demand exceeding capacity)

Yinr < Yin VI, n,r (3)
Idea: linearization of Ui, Yinr

- Uinr if Yinr = 1
nr Iinr if Yinr = 0

Where [;,, = min{Uin, }
Mipr = max{ Ui”f}
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Availability of alternatives (II)

Constraints

linr < Vinr, Vi, n,r
Vinr < linr + (minr - Iinr))/inr’ VI, n,r
Uinr + (/inr - minr)(l - }/inr) < Vipr, Vi, n,r

Vinr < Upnr Vi,n,r

® yinr = 1 = Binding constraints: (6) and (7) = Vin, = Uin,
@ yinr = 0 = Binding constraints: (4) and (5) = Viny = linr
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Linear formulation

Highest utility among the available alternatives

Linearization of the maximum of variables

Un, = mangcn{ anr}

Highest utility for individual n in scenario r: pjn, = {

Vinr < Unr
Unr < Vinr + Mine (1 — pinr)
Z Pinr =1
ieC
where M, = maxjcc Mjnr — lin
@ finr =1 = Upr = Viny = Ujnr
@ Llinr = 0= vp = iy

1 if Unr = Uinr

0 otherwise

Vi, n,r
Vi, n, r

Vn,r
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Choice and availability

Constraints

>

(
(
(
(

Winr < Yinr
Winr < Hinr
Winr < Yinr

Winr = 1

14) Only one alternative is chosen

Vi, n,r
Vi, n,r
Vi, n,r

Vn, r

13) An unavailable alternative cannot be chosen

11) An unavailable alternative cannot be the one with highest utility

12) An alternative without the highest utility cannot be chosen
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Linear formulation

Modeling framework

Model (1)-(14)

@ Linear in the variables
Any variable appearing linearly in Uj,,
The availability variables y;,, yinr and v,

The preference variables pjp,
The choice variables w;,,

@ Demand within the market

@ Further specifications
o Capacity?
e Price?
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Demand based revenues maximization

@ Demand based revenues maximization

MP, SSA, MB Demand-based discrete optimization 17 /29



Demand based revenues maximization

Maximization of revenues

Application

@ Operator selling services to a market, each offered service:

o Price
o Capacity (number of customers)

@ Demand is price elastic and heterogenous

@ Goal: best strategy in terms of capacity allocation and pricing

Revenues
@ pj, price that individual n has to pay to access service i

1 N R
Ri = E Z Pin Z Winr
n=1 r=1

@ pin endogenous variable = R; non linear
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Pricing (1)

Linearization of R;
e Discretization of the price = pl ... ,p,-Ln""

@ Binary variables \;,; such that p;, = Z,L’Z"l )\,-,,/p,(n and

Lin
Z >\inl =1 VI', n
1=1

@ Revenues for alternative |

1 N L, R
R = E Z Z /\inlpm Z Winr
n=1 /=1 r=1

o Still non linear = ajyy = AjniWinr to linearize it
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Pricing (I1)

Constraints

Nint + Winr < 14 jppy Vi,n,r,l
Qijnrl < )\in/ \V/I, n,r, /
Wil < Wine VI, n,r, /

Objective function

N
1 I
max R; = max Z inrl Pin
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Demand based revenues maximization

Capacity (1)
Priority list Capacity
@ Who has access? @ ¢; capacity of service i
@ We assume a priority list ® Crmax = MaXx; Cj, Cmin = MiN; Cj

Yinr = Yi(n+1)r  Vi,n,r o (19) o K, = max(n, cmax)

Constraints (1)
( Ymr < Z Wimr + )/in)CmaX Vi,n,r (20)

o yir=0and yj,=1=¢ < an;ll (capacity is reached)
@ Yinr = Yin =1 and yjp, = vi» = 0 = always verified

MP, SSA, MB Demand-based discrete optimization 21 /29



Capacity (I1)

Constraints (II)

n—1
Z Wimr + (1 - _VIn)CmaX = (Ci - 1)yinr + Kn(]- - )/inr) V’a n < Cmin, r
m=1

(21)

@ Yinr=Yin=1=1+ an_zll Wimr < G

(capacity must not be exceeded by the individuals choosing i + n)

@ Yinr = ¥in =0 and y;,, =0, y;n = 1 = always verified
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Case study

© Case study
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Parking choices

Original experiment

o [Ibeas et al., 2014] Modelling parking choices considering user
heterogeneity

o Stated preferences survey (197 respondents)
@ Analyze viability of an underground car park

@ 8 scenarios suggested

P W :
Free on-Street Parking | Paid on-Street Parking | Paid Underground
(FSP) (PSP) Parking (PUP)

Free Price levels: 0.6 and 0.8 | Price levels: 0.8 and 1.5
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Case study

Choice model and preliminary experiments

Mixed Logit model
o Attributes: time to reach the destination
@ Socioeconomic characteristics: residence, age of the vehicle
o Interactions: price and low income, price and residence

o Random parameters: access time and price

Preliminary experiment
@ Subset of individuals

o Fixed capacity for the 3 alternatives
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Results
N R capFSP cap PSP cap PUP Comp Time (s) Obj
25 1 10 10 10 0.20 18.30
25 5 10 10 10 3.20 18.58
25 10 10 10 10 8.49 18.86
25 50 10 10 10 74.21 18.89
25 100 10 10 10 431.46 18.92
50 1 20 20 20 0.43 33.10
50 5 20 20 20 11.58 32.26
50 10 20 20 20 97.12 31.56
50 25 20 20 20 763.37 32.23
50 50 20 20 20 8744.14 31.60
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Conclusions

@ Conclusions
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Conclusions

Conclusions and future work

Conclusions
@ High dimensionality of the problem

@ Any assumption can be made for the ¢;,

Future work
@ Design of scenarios = more experiments!
@ Speed up the computational results

o Preprocessing in particular cases (e.g. dominant alternatives)
e Decomposition techniques (e.g. by scenario)

@ Introduce new features (e.g. N as a group of individuals)
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Conclusions

Questions?

|
L — I -

THAMK YOU
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